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Abstract

Non-containment for free single variable program schemes

is shown to be NP-complete . I~ polynomial time algorithm for

deciding equivalence of two free schemes ,provided one of them has

the predicates appearing in the same order in all executions ,

is given. However , the ordering of a free scheme is shown to

lead to an exponential increase in size.
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1. Introduction

Much work in the theory of program schemes has gone into

the investigation of decidabili ty properties for different

classes of schemes [G ,M In the cases where a problem is

decidable , a natural question is to determine the comp1exi~y

of the decision procedure. Some of those questions were

answered in [CHS] where it was shown that noncontainment and

nonequivalence for single variable program schemes and for

monadic linear recursion schemes are NP—complete .

In this paper we investigate the complexity of these two

problems for the class of free single variable program schemes.

The requirement of freedom (i.e. absence of pieces of code which

cannot possibly be executed) , is a very natural one if we want

to consider schemes which are models of real programs. Although

most real programs have more than one variable, we s-how that

even in the single variable case the equivalence problem is

difficult.

We show that the noncontainment problem for free schemes

remains NP—complete. We do not know the complexity of the

equivalence problem for free schemes (except that inequivalence

is in NP), but we can reduce it to the problem of determining

equivalence of acyclic scheme s involving only predicates and

terminal assignment statements. We present a partial solution

to the equivalence problem by showing that if one of the schemes

- -  _ _ _ _ _ _  
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has all predicates appearing in the same order , then there is

a polynomial time algorithm. However, we show that there are

schemes in which ordering the predicates causes an exponential

increase in size, indicating that preprocessing by ordering one

of the schemes cannot lead to a polynomial time algorithm .

The paper is organized in ~ sections. In section 2 we

introduce the notion of a B—scheme , which is an acyclic

single variable program scheme containing only predicates and

terminal assignment statements. Section 3 contains the proof

that noncontainment for free B—schemes is NP—complete as well

as the polynomial time algorithm for the case where one scheme

is ordered. In section 4 we present an unordered B—scheme with

no small equivalent ordered scheme, and in section 5 we show

that equivalence for the full class of free single variable

schemes is decidable in polynomial time if and only if the

equivalence problem for free B-schemes is decidable in

polynomial time.

Although this is a paper about program schemes , some of the

results , notably the exponential blow—up in section 4, are of

interest in their own right. Since these results are formulated

in terms of standard concepts from graph theory , no particular

knowledge from program scheme theory is required .
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2. Preliminaries -

A B—scheme is a labeled rooted dag whose vertices have

outdegree 2 or 0. Vertices with outdegree 2 are called tests

and are labeled with Boolean variables; vertices with out—

degree 0 are called leaves and are labeled by function symbols.

One edge from a test is labeled T, the other F. S~ denotes

the number of nodes in scheme S. A B—scheme is free if there

is no path f rom the root to a leaf which contains two or more

tests with the same label.

Let S be a B—scheme . A B—assignment A (assignment for short)

is a mapping from the Boolean variables of S to ~true, false).

t(A) is the path constructed by starting at the root and

selecting the edge labeled T (F) whenever encountering a test

labeled b where A(b) = true (false). The value mapping Val

maps pairs of schemes arid assignments to function symbols and

is defined as follows: -

Val(S,A) = f if f the leaf reached by the path t(A) has ldbel f

The B—schemes S1 and S2 are 
equivalent, (S1~ S2), if and

only if for each assignment A , whose domain contains all Boolean

variables in S1 and S2,Val(51,A) = Val(S2,A). One function

symbol ~2 is designated as a special symbol and represents the

undefined function. S1 is contained in 
~2’ 

(S
1 

c S2), if and

only if for each assignment A whose domain contains all Boolean

variables in S
1 

and S
2 ,either Val(S1,A) = ~~ or Val (S

11A) =

Val (S2,A).

____ - 
- - -—-~~~~~~ ----- ---- --  - - 

--



-.5—

We note that if the leaves in a-B—scheme are replaced

by a HALT-statement , then we obtain the switching schemes of

[CHS].

3. Containment and equivalence for free B—schemes

Here we show that the containment problem for free

B—schemes is NP—complete , and that in certain cases we can

find polyno~nial time algorithms for equivalence .

Theorem 3.1: The set

BNCONT = {(s1
,S2) ~ 

and S
2 are free B—scheme s and

s1~~~s2)

is NP—complete .

Proof: The usual guess and check method shows that BNCONT

is in NP.

To show that BNCONT is NP-hard we reduce 3-CNF satisfiability

to it. Let F be a 3-CNF formula with variables xl~
x2l...xks and

let x1 appear uncomplemented in F times and complemented

q. times. Let u~ ,u’,.. .,u1 be new variables and rep lace every

uncomplemented occurrence of x~ in F by a distinct u
1. Similarly

let ~~~~~~~~~~~ be new variables and replace every complemented

occurrence of x1 by a distinct V
1. Let F’ be the formula

obtained by replacing every x1. We will construct two schemes

S1 
and S

2 such that S1 ~ 
iff the original formula F is

satisfiable. Intuitively, when S~ ~i S2, S1 will force the

satisfiability of the formula F’ and S2 will enforce the

_ _ _- - - S
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restriction that u1 = U
1 

=...= U
1 

=~~~~~ = ...= .1 2 P
~ 

1
Let F’ = (a1+b1+c1) (a2+b2+c2) ... (am+b +c). Then the

schemes S1 and ~2 
are

Si:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____________________________________ - —
‘- .—.—-—.——- - ---

S. .. -. -
~~ - S
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Now if the original formula F was satisfiable we can find an

assignment A such that Val(S21A) 
= g and Val(S

1
,A) = f, so

S1 ~~
‘ 

~2 
Conversely, if S1 -

~~~ ~2’ 
then there is an assignment

A such that Val(S1
,A) = f and Val(52,A) = g. But Val (S2,A) = g

only if, for each i , ~~~~~~~ . ~~~~~~~~~ . 
~~~ 

Hence assigning

to each x. the value A (u’) satisfies F. Since S and S can
1 1 1 2

be written down in time polynomial in the length of F, BNCONT

is NP-hard . U

We now turn to the equivalence problem for free B-schemes.

First we show that if the two schemes are ordered , then there

is a polynomial time algorithm for deciding equivalence.

Definition 3.2: A B—scheme with Boolean variables b1. . .bk ~-s
ordered if whenever a test labeled b

~ 
is a predecessor of a

test labeled b~ then i< j .

In the proof of the next theorem we use the observation

that if a scheme is ordered , then the size of the finite

automaton accepting the interpreted value language [G] is

polynomial in the size of the scheme.

Theorem 3.3: There is a polynomial time equivalence algorithm

for ordered schemes.

Proof: Let S1 and S2 be schemes in which the Boolean variables

appear. We will construct deterministic finite

automata M1 and M2 from S1 and S2 such that S1ES2 if f

— ———. - - 
-5- 

.5 — 5—
’ - -——.——.-——. —

_______ S 5- 
y_ ,-

~
-..-, . .~ . .- - -  -5-
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L(M1) = L(M2). M1 
will accept the string V1V2...Vkf (where

is either T or F and f is a function symbol) iff Val(S~ ,A) =

f where A is the assignment

(true if V. T
A(b.) =~~ 1

1 false if V. F.
1

M. is constructed as follows . We extend S. so that every

Boolean variable is tested on every path from root to leaf.

We may need to add extra tests if (1) the root is not labeled

b1
,(2) there is an edge from a test labeled b

~ 
to a test

labeled b~ 1 and j>i+1 , or (3) there is an edge from a test

labeled b. to a leaf, and i<k. For example in the second case

the edge

j?i+l, V=T or F

is replaced with

©L cJ T 6 . .

We add a new accepting node and for each leaf labeled f an

edge labeled f from the leaf to the accepting node . Then the

resulting graph is the state graph.. of M~ ; nodes are states,

edge labels are state transitions, the test labeled b1 
is

the start state, and the accepting node the only accepting state.

Since the Boolean variables are ordered it is clear that

L(M1) = L(M2) iff S~~S2. Since M1 and M2 can be computed in

time polynomial in the size of S~ and ~2’ 
and equivalence of

—5——— .-- -- -5- - — — .- —
‘ .— ———--———- - — ——-——________ —

- . 5  
5 - S - - - -~~~~~ -- -~~~~~ — - _ _-5  -
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deterministic finite automata can be done in polynomial time

[AHU],there is a polynomial time algorithm for ordered schemes. U

We close this section by proving that Theorem 3.3

remains true in the case where just one scheme is ordered .

The method can be characterized as “graph pushing ” .

Definition 3.4: Let S be a free B—scheme and b a Boolean

variable. Then S[b=true] is the scheme obtained from S by

setting b to be true. More precisely :

1. For each vertex v labeled b in S, do the following .

Delete v and any edges connected to it. Let u be

the vertex such that (v,u) was labeled T. If v was

the root, make u the root. Otherwise for each

vertex w such that (w,v) was in S, insert edge

(w,u) and give it the label of (w ,v)

2. Delete any inaccesible vertices.

S[b=false] is defined analogously . U

Lemma 3.5: Let S1 
and S2 be free B—schemes. Then S1

ES
2

if and only if

S1[b=true ]~~S2 (1~~tx~~ ] and S1[b=false]ES2[b=false-J

.Proof: Immediate.

We now present a polynomial time algorithm which solves
the equivalence problem for two free B-schemes, provided one

is ordered.

- 5 -- -  - - - - -
‘ -—--— — - 5 - - - — —-  ~~~~~~~~~. ---5 -

— . 5  
- - - -
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Algorithm 3.6:

Input: Free B—scheme S1 and ordered B-scheme S2.

Output: “Yes ” if the schemes are equivalent , “No” otherwise.

begin

comment L is a list of pairs of graphs which must be

equivalent in order that S1 and S2 be equivalent;

initialize L to (S1,S2);

repeat

let n be a node of S1 all of whose predecessors have

been marked and let v be the subgraph with root n;

let (v,vi),...,(v,vm) be all the pairs of graphs on

L in which v occurs ;

comment since v
1
,v2,.. . ,v are subgraphs of an ordered

scheme , the method in Theorem 3.3 can be used to

test their equivalence ;

if -, (v1Ev2~~. - . Eva) then output (“No ”) and halt;

if v is a leaf then

comment since v is trivially ordered , the method

in Theorem 3.3 can again be used to test

equivalence of v and

if -~ (vEv1) then
output (“ No ” )  and ha l t ;

else
A: add to L the pairs (v ’ , v1[b true) ) and (v ” ,v1[b=false])

where b is the label of v ’s root n and v ’ (v ” )
is the subgraph of reachable via n ’ s
outgoing T-edge (F-edge)

f i ;
remove the pairs (v ,v1) , . . . , ( v ,v ) from L;
mark n;

until  all nodes of S1 have been marked;
output (“Yes ”)  and halt;

.5.-... 5- 
5 - S ~~~~~~~~~~~~~~~~ - —~~
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Theorem 3 . 7 :  Algorithm 3.6 works correctly and runs in poly-

nomial time .

Proof: It follows from Lemma 3.5 that the property

P: S1ES 2 < >  V(v,v.)EL : v~V~

is an invariant for the ioop. To show correctness then , it

is sufficient to note that P is true intially and that when

the algorithm stops, one of the following is true :

a) all nodes have been marked, the list L is empty

and the answer is “Yes” .

b) not all nodes have been marked , there is a pair

(v,v
~
) on L such that v

~
v
~ 

and the answer is “No” .

To see that the algorithm runs in polynomial time

observe that the loop is executed at most IS1! times and each

execution of the loop requires at most IS 2 ! equivalences of

ordered schemes which can be done in polynomial time by

Theorem 3.3.  S

Note that the freedom of S1 guarantees that the graph

v ’ Cv ” )  in the statement labeled A in the algorithm is equal

to v [b=true ] ( v [ b= f a l s e] ) .

4. A scheme with no small equivalent ordered scheme

Here we construct a free B—scheme S0 whose smallest

ordered equivalent has size “exponential” in f s 0~ . First we

need some extra notation .

Let S be a B-scheme . A partial B-assignment (partial
5,

assignment for short) . is a partial mapping from the Boolean

varaibles of S to {true ,false}. Two partial assignments A1 and

—
~~~~‘. S .—-- - -  - - 5--.- -

- S . - - 
- S .5 -
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A2 are consistent if they have the same value whenever they

are both defined. The union of two consistent partial assignments

A1 and A2 , A1uA 2, is defined to be

~~A1(b) if A1(b) is defined

(A1uA 2 ) (b) = ~ A2(b) if A2 (b) is defined

Lun~
efimed otherwise

A partial assignment A1 is an extension of A2 if for each

Boolean variable b , A2 (b) defined implies A1(b ) = A 2 (b) .

Let S be a scheme . A partial assignment A determines a

path from the root to a node which is either a leaf or a test

with a label on which A is not defined. Nodes on this path

are said to be specified by A. Any node specified by some

extension of A is said to be reachable via A. Note that the path

determined by A can not be extended arbitrarily by an extension

of A since certain tests not on the path may already be specified

by A .

Assume that n is a power of 2. The scheme S~ will contain

2n— 1 Boolean variables ~~~~~~~~~~~~~~~~~~~~~~~~ We say that a

partial assignment A satisfies an equality u~~ v~ if A ( u ; )  and

A(v~ ) are both ,defined and are equal. Given a set of equalities

• {u 1 =v . , .. .., u =v . ) we construct the scheme , called a column,
1 1 1m m

shown below

—5-- - — - - - —.———— —.5- .-- — .—•———.-—---- - ______________________________________________
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Note that if A satisfies all equalities then the node labeled

1 is reachable via A.

The scheme S~ is now constructed in two stages

a) The base of S~ is a complete binary tree with n-i

interior nodes labelled with ~~~~~~~~~~~~ The leaves

are numbered from 0 to n — l .

b) The i ’ th leaf is replaced by the column C ., obtained as

follows. Remove from the set of equalities

{u —v . , u —v , . . . ,u —v
1 (1+i)mod n 2 (2+~ )mod n n-i (n-l+i) mod n

all equalities involving variables that occur on the path

from the root to leaf i , and construct C~ from the

remaining equalities. Note that the sets o f - equalities

are just  cyclic permutations of equalities between

{u il . .. ,Un_ l } and {v1, . . ., vn }.

The following facts about S0 are evident -

a) S0 is free and has n—l +3( n— l— log n ) .n+2n <3n 2 nodes.

b) No equality constraint appears more than once.

--5’- - .5-— —

S ... ~~~~~
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c) Every path from the root to a leaf labeled 1 is missing

log n variables among the v ’ s.

Now let S~ be an crdered B—scheme which is equivalent to

S0 , and let Y be the Boolean variables which come first

in the ordering . We shall show that there are “exponentially ”

many assignments to variables in Y which compute d i f f e r en t  funct ions

of the remaining variables. Since each of these different functions

must be represented by different nodes in 
~~~~~~~

‘ 

~l 
must have

“exponentially ” many nodes.

Relabel the variables such that Y {y
1
,...y

~~
_ } and let the

V2
remaining variables be z = {z

1,...z2 1 ~~~~.}. Call a column

V

in S0 
acceptable if there is no equality y

~ 
= y~ between two

elements of Y appearing in the column . There are at most

~ unacceptable columns. Call an assignment A to

variables in Y acceptable if there is some acceptable column

reachable via A.

Now we show the key result of this section , that if two 
5-

acceptable assignments are “a little different” then they can

be extended such that one of them specifies a node labeled 1

and the other a node labeled 0.

Lemma 4.1: Let A1 and A2 be acceptable assignments (to the

variables in Y) which d i f fe r  in more than log n variables. Then

there is an assignment A to the variables in Z such that

Val (A 1uA ,S0 ) ~‘ Val(A 2 uA ,S0 ) .

5-, - S
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Proof: Since A1 and A2 are acceptable assignments , we can

always reach acceptable columns via A1 and A2 . There are two

cases to consider:

1) Assume that some acceptable column C is reachable

via both A1 and A2 . There are 2 log n variables which

do not appear in C. Half of them are u ’s which appear on the

path from the root to the column . The other half consists of

v ’s. A1 and A2 cannot d i f f e r  on the variables on the path from

the root to C since C is reachable via both A1 and A2 . Thus

even if A1 and A2 d i f f e r  on all the log n u ’s missing from

column C , there is at least one variable , y~ eY~ which appears

in an equality of C on which A1 and A2 d i f f e r . (The variable

may be either a u or a v , we don ’t care wh ich . )  The equality

in which y~ appears must be of the form y 1=z
3

, z~~eZ since the

column is acceptable , that is , the column has no equali ty

between two y ’ s. Since S0 is free , z~ does not appear on

the path from the root to C. Hence we can f ind an assignment

A to the variables in Z such that A1uA and A2 uA both specify

C and A1U A  satisfies all equations in C. However , A ( z ~~) =

~ A 2 (y~ ) so Val (A 1uA ,S0 ) = 1 and Val (A 2 uA , S0 ) = 0.

2) Assume that there is no acceptable column C which is

reachable via both A1 and A2 . We f i rs t  find a partial

assignment A to the variables in Z such that A1uA specifies

a column which can be satisfied by some extension , A ’, of

A1uA . Then we show that we can choose the extension A’ such

that it satisfies the cloumn specified by (A1uM but the

column specified by (A 2uA )uA
’ is not satisfiable.

- --5- -S — - _ ____
~~5 _ ____

~~- - - 
S 

s . 5  . . -~ , -



-17—

Let C1 be an acceptable column reachable via A1 and let A

be the minimal partial assignment such that A1uA specifies C1

and all equations in C1 
involving variables in Y are satisfied

(this is always possible since A1 
is acceptable , S

0 
is free and

no y. y. appears in C1
). A is now defined for at most Iy~+log n =

n variables. Perform the following step while A2uA

does not specify some col umn:  let Zk 
be the label of the last

node specified by A2 uA. Extend A by setting zk to be false , and

if Zk =Z appears in C1, extend A to set z to false. (Setting

zk 
and Z to true would work equally well.) This process

terminates a f te r  adding at most 2 log n variables to A , after

which A 2 uA specifies some column C 2 (c 2 is not necessarily
acceptable) . Note that all equalities in C1 involving variables

in A1
UA are still satisfied. Ther e are at least (n—log n - I A I ) / 2  =

(n—log n—V~~~ — 3 log n)/2 equalities in C1 
all of whose variables

are unassigned by A1
uA. There are only 2 log n variables not

appearing in C2, thus there is a z1=z. in C1
, z. and z. not

assigned in A uA , and z . =x , some x , is in C . x is not z.
3. 1 e e 2 e

by the construction of Now by extending A so that all equalities

in C1 are satisfied, and A ( z 1) = A(z~~) ~ (A2 U A ) (X
e

)
~ 

we can

ensure that A
1

uA satisf ~i.es C1 whereas A
2

uA does not satisfy C2.

This completes the ‘proof of the lemma .

— 5 -
’- - .____—•____——_ 5 --— — . .—  —55
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Before we can show that there are many acceptable assignments

which differ by more than log x’i of the variables we prove the

following lemma which states that the total number of acceptable

assignments is big.

Lemma 4.2: Let S be a B-scheme whose graph is a complete binary

tree , with 2k 1 interior nodes labeled with variables

u1,~...,u2k_1 and leaves labeled over {0,l}. -Let M b e any subset

of the variables of size m and let the number of leaves labeled 1

be g. Call an assignment to the variables in M acceptable if

a leaf labeled 1 is reachable from it, and denote by A(m ,g,k) the

number of acceptable assignments. Then A(m ,g,k)�2mg/2
k.

Proof: The proof is by induction on k, the height of the tree.

Basis: The result is immediate for k=0.

m k-lInduction step: Assume that A(m,g,k-l) > 2 g/2 and consider

complete binary trees with 2k leaves. Let the number of leaves

labeled 1 in the left subtree be g~ and in the right subtree

Let the number of variables from M in the left subtree be

L and in the right subtree r. There are two cases to consider .

- : 1) The root is not labeled with a variable in M, hence

t+r=m . Now

I! A (m ,g,k) = 22’A (r ,g~ ik_l) + 2rA (L,g~ ,k_l)

— A (r sg~ ik_l) A (Z1g~ fk_l)

and using the inductive hypothesis

—5——. 
—~~~ - ———-S——S— S 

~__ — —— - - — 5-
’- - .—_~~~~~~~~ -•—-_—-——- - —55 —-—.-..

- - - 
5- - 

- 
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A(m ,g, k) � 2 L (2 r
g /2 1 l ) + 2r(2Lg/2k~l)

— (2rg~/2
k~~) (2~g~/2

k_l
)

= 2~~~r 1 (g~ +g~~)/2~~~
1_ g~ g~ /2 2 (k_i)]

= 2in
[g/2 k + g12

k 
- g~g~/2

2
~~~~~ ]

~ ?g/2
k 
as g~ , g < 2k-l

2) The root is labeled with a variable from M. Then

L+r+1 = in and

A(pi ,g, k) = 2LA(r,g~ ,k_1) + 2rA ( 9..,g~~,k_ l )

� 2~~(2rg~/2~~
-Sl
) + 2r (2

2;
g/2k l )

k-l= 2  (g~~+g)/2

= 2mg,2k

U

Now we can prove that any ordered scheme equivalent to S0
must be big.

Theorem 4.3: Let S~ be an ordered B-scheme which is equivalent

t o S .  Then

I s1! � 2m- (log n+l)/2 where m =

Proof: From the discussion preceding Lemma 4.1 we know that S0

contains at least ~~~/2 acceptable columns. Since Y contains in

variables there are at least A(m ,~~/2 , log n) acceptable assignments

to variables in Y. From Lemma 4.1 we know that if two of these

assignments differ by more than log n of the variables then

they must lead to two different nodes in Now there are at

~—5_~_ 
—5- -- — - — — 5 5 - - — —

‘ 5 - - .————.•---—-- — —.— -  —

— . 5  
- - - .5 - - - —- 

- 5 5-— i. ,-~—
. ~~~~~— -
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most (~~~~) assignments to m variables which differ from a given

assignment in i variable values. Hence there can be at most
log n log n

< < ~~~~~~ 
n+l assignments which differ from a

given assignment by at most log n variables. Therefore , there

are at least A(m ,fl/’2,log fl)/~lo~ n+l acceptable assignments which

differ by more than log n variables and hence IS 1! 
�

og n+
ACm , /2 ,log.n)/m . By lemma 4.2 we now get

I s~ I � (2m•(/2)/2 log n
)/

log n+l

= 2m—]~,2 (log n+l) log in

= 2m—1-~~.og n+l) (log n-1)/2 (recall that in = V~~ )
= 2m~~ U0g n+l)

and the theorem is proved. U

5. Extension to single variable program schemes

In this section we show that the equivalence problem for

free single variable program schemes ( f ree  Ianov schemes) is

polynomial time equivalent to the equivalence problem for free

B-schemes. -

A single variable program scheme (an I—scheme) is a rooted

directed graph (not necessarily acyclic) whose nodes have

outdegree 0,1 or 2. Nodes with outdegree 2 are tests and are

labeled with Boolean variables. Nodes with outdegree 0 and 1 are

called function nodes and are labeled with function symbols.

Only vertices with outdegree 0 may be labeled with Q. Edges
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leaving tests are labeled with T and F as in B-schemes. An

I—scheme is free if every B—scheme which is a subgraph is free.

We shall only be interested in the behaviour of our schemes

under Herbrand interpretations (free interpretations fG] ) where

the values of the Boolean variables can change after each function

step. We extend the notion of B-assignments in the following way .

Let F be a set of function symbols. An I—assignment A maps

elements from (F_{~~})* into B—assignments. The interpretation

of A(w) is the mapping defining the values of the Boolean

variables in state w (the state after computing the functions in w).

The path determined by A in S is the obvious generalization of

the trace t(A) defined for B-schemes .

The proof that we can determine equivalence of free I—schemes

in polynomial time given an oracle for equivalence of free

B—schemes uses a procedure which is very similar to the minimi-

zation procedure for deterministic finite automata on p. 124-127

in [AU].

Let F be a set of function symbols , and denote by (F_ {Qfl*k

the set of all strings over F— {~2) of length k or less. A

k—assignment is defined as a I—assignment except that its

domain is (F_{c~})*
k 
rather than (F_ {~~})*.

- 
The path label p&(S,A) for I—scheme S and k—assignment

A , is the string of function symbols appearing along the path

determined by A. (The string may be of length less than k if

the path reaches a leaf.) Let function nodes n1 and n2 appear in

S, and let S1 and S2 be the (sub )—schemes with n1 and n2 as roots.

Then n1 is k—equivalent to n2 if for each k—assignment A , pL (S11A) =

_ _ _ _- -5—-- -
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pL (S2 ,A ) .  Thus for example two function nodes are 0—equivalent

if f they have the same label .

The next lemma , the proof of which we leave to the reader ,

states that k—equivalence can be determined from (k-1)—equivalence

and some equivalence tests on B-schemes.

Lemma 5.1: Let S be a free I—scheme with function nodes n1 
and

n • Let v. be the B—scheme whose root is the descendant of n.,2 i 1

i=1 or 2 (v~ may be simply a function node). Label each leaf ~

in v1 by its equivalence class 124k 1  in the (k—l)-equivalence

relation . Then n1 and n2 are k—equivalent if and only if n1
and n2 are (k—1)—equivalent and v1Ev2, where the last equivalence

is of B—schemes.

Theorem 5.2: Let S be a free I—scheme with t nodes. Given an

oracle for determining equivalence of free B—schemes , there is

a polynomial time algorithm for determining if two fu ction nodes

in S are k—equivalent for all k.

Proof: It follows trivially from the preceeding lemma that two

nodes are k—equivalent for all k if and only if they are

t—equivalent. Since 0—equivalence is easy to determine (the

nodes must have the same label), we can use Lemma 5.1 to compute

-k—equivalence for k = 1,2,...,t. At most t2 B—scheme tests are

made for each value of k , hence at most t3 B—scheme tests are

made altogether. U

Having shown how to handle k-equivalence for all k we now

_______________  5- - --. — -‘- - . -—-—---5-- ---- -
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define what it means for two I—schemes to be equivalent.

Let S be an I—scheme and A an I—assignment (i.e. A maps

elements from (F_ {~~})* to B—assignment) . The value mapping

Val is defined as follows.

- I
the function symbols on the path determined

by A if the path is finite and does
Val ( S ,A) = /)

- ~~ otherwise

Two I—schemes S1 and S2 are equivalent if Val(S1,A) = Val(S2
,A) for

all I—assignments A. It is clear that this definition means

equivalence under all Herbrand in terpreta t ions  ( free i n t e rp ret a t i ons)

and it is well known that this implies equivalence under al~

interpretations tGI .

We would like to show that two schemes are equivalent if f

their root nodes are k—equivalent for all k. Unfortunately this

is not quite true; the problem is that the schemes may both

compute S~ but do so in different ways.

A free I—scheme is compact if from every non—leaf node there

is a path to a leaf not labeled ~ .

Lemma 5.3: There is a polynomial time algorithm to transform

any free I—scheme into an equivalent compact free scheme.

Proof: Immediate. U

Lemma 5.4: Two free compact I—schemes S1 
and S

2 are equivalent

if f their roots n
1 

and n2 are k—equivalent for every k.

_ _ _ _ _ _ _ _ _ _ _ _  - 
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Proof: It is clear that if n
1 
and n2 are k-equivalent for all

k, then S1 is equiv~’1ent 
to S2. Conversely, suppose s 1 is equivalent

to 
~2 

and let k be the smallest value for which there is a

k-assignment A such that p9.(S11A) ~ p9..(S2
,A). Not both of

p2.(S1
,A) and p2 (S2,A) can end in Q , so assume pQ (S1

,A) does not.

We can extend A to an 2.-assignment A’ , Z�k with A’(w) = A(w)

for all w, I w I � k , such that A’ defines a path to a leaf not

labeled ~2 in S1
. Now since the kth symbol on the path defined

by A’ in S2 is different from the k
th symbol on the path ir. S1,

and Val (S1
,A’) ~ Q, we must have S1 not equivalent to S2

, a

contradiction .

Now the following theorem is an immediate corollary of

the preceding lemmas.

Theorem 5.5: There is a polynomial time algorithm to decide

equivalence of free I-schemes if and only if there is a polynomial

time algorithm to dedide equivalence of free B-schemes.

We close this section with the remark that non-inclusion

for I—schemes is NP—complete . Inclusion for I-schemes is

defined exactly as for B—schemes with “I—assignment” replacing

“B—assignment” . That the problem is NP-hard is clear from

Theorem 3.1. That it is in NP is shown i-h [CHS].
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